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Outline

Performance assessment for tank closure
Tank life estimation technical approach
– Deterministic
– Stochastic
– Corrosion Mechanisms

Results
Recommendations



Tank Closure Performance Assessment

Performance assessment supporting closure of F-Tank Farm 

Carbon steel of high level waste tank initially provide a barrier 
contaminant escape 
Corrosion mechanisms will degrade liner over time
Liner will no longer provide a barrier

Estimate the time to failure of the tank liner due to corrosion 
processes



Life Estimate: Deterministic Approach

Active corrosion mechanisms on 
the steel under closure conditions 
Assumption of only one liner

Exposures
– Contamination Zone
– Grout/Concrete Vault Closure Grout

Contamination Zone

Concrete Vault



Contamination Zone

Function of the undissolved solids 
in the residual on tank bottom
R-value: Ratio of inhibitor species 
(nitrite and hydroxide) to 
aggressive species (nitrate + 
chloride) 
– High R-values: Minimal 

Corrosion
– Low R-values High corrosion due 

to insufficient inhibitors
Results indicate no accelerated 
corrosion from contamination 
zone
Corrosion rate of 0.04 mils/year
(1μm/year) assumed
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Corrosion in Concrete/Grout

Corrosion of steel exposed to concrete/grout occurs by a complex
mechanism that occurs through metal dissolution at the concrete/metal 
interface. 
Concrete generally prevents corrosion of the steel
– Forms passive oxide on the steel surface
– Maintains a high pH environment
– Provides a matrix resistant to diffusion of aggressive species

Passivity can be lost through carbonation or through chloride induced film
breakdown
– Pore water characteristics change with the introduction of chlorides or carbon 

dioxide, the passive film on the steel may break down 



Carbonation

Pore water pH reduces 
dramatically due to the conversion 
of the calcium hydroxide to 
calcium carbonate through 
reaction with carbon dioxide 

Complex function of the 
permeability of the concrete, 
relative humidity, and the carbon 
dioxide availability 

Simple Model

Assumption: subsurface concrete 
vaults water saturated
CO2 transport is in the aqeuous
phase.
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X   =   carbonation depth (cm)
Di =   intrinsic diffusion coefficient of

Ca++ in concrete (cm2/s)
Cgw=   total inorganic carbon in ground

water (mole/cm3)
Cg =  Ca(OH)2 bulk concentration in

concrete solid (mole/cm3)
t    =   time (s)



Effect of Carbonation

Reduction of the pH into a regime where the steel is 
susceptible to corrosion 



Carbonation Times

0.02 mol/cm3Cg

1.93E-7 mol/cm3Cgw (as soil moisture content) 

1E-8 cm2/sec ≤ Di ≤ 1E-3 cm2/secDi (Ca++)

4-in.Type IV Tank Minimum Concrete Vault Dimension

30-in.Type III Tank Minimum Concrete Vault Dimension

22-in.Type I Tank Minimum Concrete Vault Dimension

ValueParameter

Time to Carbonation of Concrete/Tank Steel Interface
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Chloride Induced Corrosion: Initiation

Due to the breakdown of the 
passive film, thereby indicating 
that chloride diffusion is the rate 
controlling step for corrosion 
initiation

Followed by oxygen diffusion for 
corrosion reactions to occur 

Simple Empirical Model:
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tinitiation = time required for initiation 
(years)

tc = thickness of the concrete
cover (in.)

WCR   = water-to-cement ratio
[Cl-]    = chloride concentration in the

groundwater (ppm)



Chloride Induced Corrosion: Reaction

Oxygen diffusion to breakdown of passivity

Corrosion rate
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MFe = molecular weight of iron (56 g/mol)
ρFe = density of iron (7.86 g/cm3)
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NO2   =  Flux of oxygen through concrete (mol/s/cm2)
Di =  Oxygen diffusion coefficient in concrete (cm2/sec)
Cgw =  Concentration of oxygen in groundwater (mol/cm3) 
ΔX  =  Depth of concrete (cm)



Chloride Induced Corrosion: Input 
Parameters

7.25 mg/LCgw (Oxygen)

1E-8 cm2/sec ≤ Di ≤ 1E-3 cm2/secDi (Oxygen)

2-100 ppm[Cl-]

0.6WCR

4-in.Type IV Tank Minimum Concrete Vault Dimension

30-in.Type III Tank Minimum Concrete Vault Dimension

22-in.Type I Tank Minimum Concrete Vault Dimension

ValueParameter



Chloride Induced Corrosion Initiation 
Time

Chloride Induced Corrosion Initiation Time
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Corrosion Rates

Critical oxygen diffusivity at which the corrosion rate will be greater than 
0.04 mils/year corrosion rate:
– Type I Tank: 8.29x10-5 cm2/sec
– Type III Tank: 1x10-4 cm2/sec
– Type IV Tank: 1.51x10-5 cm2/sec

Corrosion Rate As a Function of Oxygen Diffusivity
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Results of Deterministic Approach

Initially, general corrosion proceeding at 0.04 mils/year for the 
tank steel exposed to the concrete/grout. 
Chloride attack then initiated leading to loss of passivity
Oxygen diffusion for corrosion reactions

Closure 
Grout

Contamination Zone

Concrete 
Vault

CO2 Cl-
O2

CARBONATION 
FRONT

CHLORIDE 
ATTACK FRONT



Inputs/Assumptions

Corrosion is initiated on the both internal and external surfaces of the tank 
once chloride has penetrated through the thinnest section of concrete.
Chloride concentration assumed to be 10 ppm
Oxygen diffusivity is assumed to be 1x10-4 cm2/sec   
Assume that oxygen is available over the entire surface once the oxygen 
penetrates the thinnest section of concrete, corresponding to the following 
corrosion rates:
– Type I Tanks - 0.0478 mils/year
– Type III Tanks - 0.04 mils/year
– Type IV Tanks - 0.26 mils/year



Life Estimation Grouted Conditions: Type I 
tanks

Corrosion of Type I Tank Exposed to Grouted Conditions

Chloride Attack 
Initiated at 3550 

years

Penetration at 5809 
years
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Life-Estimation Grouted Conditions: Type III 
Tanks

Corrosion of Type III Tank Exposed to Grouted Conditions
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Life Estimation Grouted Conditions: Type IV 
Tanks

Corrosion of Type IV Tank Exposed to Grouted Conditions

Chloride attack 
initiated at 444 

years

1217 years, 
0.4375-in.

1096 years, 0.375-
in.
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Life Estimate: Stochastic Approach

Proposed to account for potential uncertainty in the time-frames proposed 
for regulatory compliance
Initially Considered
– First order reliability methods (FORM)

• Statistical information is sparse 
• Marginal probability distributions 

– Direct uncertainty analysis
• Separation of the probability calculations from the evaluation of the performance 

measure 
• Discretization of the probability intervals 

Ultimately, USED Monte Carlo Simulation
– Inherently represent the uncertainties in the deterministic approach 
– Large number of simulations
– Exploits the in-depth knowledge of SRS subsurface environments and HLW 

tanks as input distributions for the simulations 



Stochastic Technical Approach

Life of the tank liners was 
assumed to be a function of the 
time to corrosion initiation plus 
the time for corrosion to 
propagate through the liner 
Grouted Conditions

General corrosion in grouted 
conditions
Chloride induced depassivation, 
followed by general corrosion
Carbonation induced loss of 
protective capacity of the 
concretecombination

)/(
)(
yearmilsateCorrosionR

milsThicknesstt initiationfailure +=

tfailure = time to complete consumption of the tank wall by general corrosion
tinitiation = time to chloride induced depassivation or carbonation front
Thickness = initial thickness of liner (mils)
Corrosion rate:= Dependent upon condition, i.e. chloride or carbonation



Monte Carlo Models

Case 1: IF tinitiation [Cl-] ≥ tinitiation [Carbonation]

Case 2: IF tinitiation [Cl-] < tinitiation [Carbonation]
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MFe = molecular weight of iron (56 g/mol)
ρFe = density of iron (7.86 g/cm3)
NO2 =  Flux of oxygen through concrete 
(mol/s/cm2)



Monte Carlo Models

Case 3: IF tfailure [Cl-] ≥ tinitiation [Carbonation]

Chloride induced depassivation → corrosion between 
initiation time to carbonation and initiation time of chloride 
induced corrosion → corrosion due to carbonation. 
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Type IV Tank Simulation: Inputs

Uniform Distribution

Min:365-mils
Median:385-mils
Max:405-mils
Mean: 385 mils

Uniform Distribution

Min:3.75-in.
Median:4-in.
Max:4.25-in
Mean: 4-in.

Steel Liner Thickness (mils)Concrete Vault Thickness (in.)
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Initiation of Chloride Attack  Input 
Distributions: Type IV

Chloride Initiation

Measurements

Min:6.249
Median:6.867
Max:31.407
Mean: 7.06

Specifications

Min:0.55
Median:0.6
Max:0.65
Mean: 0.6

[Cl-] (ppm)WCR
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tinitiation = time required for initiation 
(years)

tc = thickness of the concrete
cover (in.)

WCR   = water-to-cement ratio
[Cl-]    = chloride concentration in the

groundwater (ppm)
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Chloride Corrosion Rate Distributions

Chloride Initiation

Measurements

Min:6.249
Median:6.867
Max:31.407
Mean: 7.06

Specifications

Min:0.55
Median:0.6
Max:0.65
Mean: 0.6

[Cl-] (ppm)WCR
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initiation

tinitiation = time required for initiation 
(years)

tc = thickness of the concrete
cover (in.)

WCR   = water-to-cement ratio
[Cl-]    = chloride concentration in the

groundwater (ppm)
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Carbonation Input Distributions: Type IV

Carbonation: Simple Model
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X   =   carbonation depth (cm)
Di =   intrinsic diffusion coefficient of

Ca++ in concrete (cm2/s)
Cgw=   total inorganic carbon in ground

water (mole/cm3)
Cg =  Ca(OH)2 bulk concentration in

concrete solid (mole/cm3)
t    =   time (s)

Analytical

Min:0.00019
Median:0.00068
Max:0.0122
Mean: 0.00068

Measurements
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Mean: 4.3755E-7

Cg:Ca(OH)2 bulk Cgw (mol/cm3)
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Type IV Results: Di(Ca++) = 1x10-8cm2/sec, 
Varied Di (O2) 

Time to Failure: Di(O2)=0.0001 Time to Failure: Di(O2)=0.000001 Time to Failure: 
Di(O2)=0.00000001 
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50.0% median 1920
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0.5%  1346

0.0% minimum 1110

Moments 
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Std Err Mean 3.3016607

upper 95% Mean 3895.8665

lower 95% Mean 3882.9242

N 1000000 
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Type IV Results: Di(Ca++) = 1x10-6cm2/sec, 
Varied Di (O2) 

Time to Failure: Di(O2)=0.0001 Time to Failure: Di(O2)=0.000001 Time to Failure: 
Di(O2)=0.00000001 
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Moments 
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Std Dev 2163.4304 
Std Err Mean 2.1634304 
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lower 95% Mean 2502.8105 
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Type IV Results: Di(Ca++) = 1x10-4cm2/sec, 
Varied Di (O2) 

Time to Failure: Di(O2)=0.0001 Time to Failure: Di(O2)=0.000001 Time to Failure: 
Di(O2)=0.00000001 
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Recommendations

Di (Ca2++) = 1x10-6 cm2/sec Di (O2) = 1x10-6 cm2/sec

Type I Tank Failure Distribution Type III Tank Failure 
Distribution 

Type IV Tank Failure 
Distribution 
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Summary

Estimate lifetime of tank steel for performance assessment for 
tank closure
Deterministic and Stochastic approaches
Accounted for corrosion of tank steel liner in contact with 
grout/concrete
Data will be used as input into groundwater modeling efforts: 
PORFLOW and GOLDSIM


